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Abstract Coral reefs are increasingly threatened by var-

ious disturbances, and a critical challenge is to determine

their ability for resistance and resilience. Coral assem-

blages in Moorea, French Polynesia, have been impacted

by multiple disturbances (one cyclone and four bleaching

events between 1991 and 2006). The 1991 disturbances

caused large declines in coral cover (*51% to *22%),

and subsequent colonization by turf algae (*16% to

*49%), but this phase-shift from coral to algal dominance

has not persisted. Instead, the composition of the coral

community changed following the disturbances, notably

favoring an increased cover of Porites, reduced cover of

Montipora and Pocillopora, and a full return of Acropora;

in this form, the reef returned to pre-disturbance coral

cover within a decade. Thus, this coral assemblage is

characterized by resilience in terms of coral cover, but

plasticity in terms of community composition.

Keywords Coral � Bleaching � Cyclone � Phase-shift �
Resilience � Moorea

Introduction

Like many marine ecosystems, in recent decades, coral

reefs have been severely impacted by various types of

natural and anthropogenic disturbances (Hughes et al.

2003, 2007; Pandolfi et al. 2003; Bellwood et al. 2004).

While some disturbances are a routine part of coral reef

dynamics, there is concern that the frequency and severity

of large-scale disturbances have increased over the last

three decades (Hoegh-Guldberg et al. 2007). Faced with

assaults by numerous disturbances, coral reefs have been

affected by widespread mortalities of keystone organisms,

and in many cases have undergone a striking phase shift in

community structure (McManus and Polsenberg 2006).

Classically, these phase shifts have involved the replace-

ment of stony corals by algae, which are then unable to

provide the ecosystem goods and services previously sup-

plied by corals (McManus and Polsenberg 2006).

Scleractinians provide the framework of coral reefs, and

the dynamics of these ecosystems are largely influenced by

changes in the population structure of corals, the detection
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of which requires long-term monitoring efforts, with fre-

quent sampling necessary to resolve rapidly occurring

events such as episodic recruitment, sudden-onset lethal

diseases, or transient population perturbations (Connell

et al. 1997; Coles and Brown 2007). The temporal reso-

lution of time-series analyses is particularly germane to

testing coral communities for resistance (i.e., the capacity

to remain unchanged following disturbances), describing

recovery trajectories (i.e., patterns of recolonization fol-

lowing disturbances), and assessing resilience (i.e., the

capacity to return to a reference state following distur-

bances; West and Salm 2003).

The coral reefs along the north shore of Moorea have

been studied at the Tiahura Outer Reef Sector (TORS)

since the early 1970s, but starting in 1991, a new quanti-

tative program began to record changes with annual reso-

lution (Adjeroud et al. 2002). Between 1991 and 2006,

TORS has been impacted by one cyclone (1991), and four

bleaching episodes (1991, 1994, 2002, 2003) that were

associated with high sea-surface temperatures (Penin et al.

2007; Fig. 1). Prior to 1991, TORS experienced two

bleaching events (1984 and 1987), and outbreaks of the

coral predator Acanthaster planci (1980–1982), which

caused coral cover to decline from *45% in 1979 to

*12% in 1982 (Bouchon 1985; Berumen and Pratchett

2006). The 37-year history of TORS constitutes one of the

longest records of coral reef dynamics, and the trajectories

of change are marked by striking differences compared to

those dominating contemporary literature. Notably, while

TORS has sustained multiple severe losses of coral cover,

this reef has repeatedly regained coral cover to levels

similar to pre-disturbance levels, and has shown no sign of

a persistent phase shift to macroalgal dominance. Here, we

focus on the most recent 15 years of TORS, and compare

the effects of five disturbances in the context of better

understanding the roles of resilience and recovery in

determining the trajectory of change in coral communities.

Materials and methods

The study site is located on the outer reef slope at the

Tiahura sector at the western end of the north shore of

Moorea (17�300S, 149�500W). The Tiahura reef slope is

largely free of direct anthropogenic disturbances, as dem-

onstrated by sediment and water quality analyses (Schrimm

et al. 2004). The percent cover of algal turf (heterogeneous

assemblage of filamentous algae that typically is \10 mm

in height), macroalgae (macroscopic fleshy algae, repre-

sented mostly by the genera Turbinaria, Halimeda, and

Sargassum) and scleractinian corals was recorded along

four permanent transects of 25 m length, oriented parallel

to the reef front, and placed at 10–12 m depth on the outer

slope. For the purpose of the present analyses, each transect
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1984
29.92°C
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09/02
18/03

1987
29.79°C
6 weeks
05/03
12/04

1991
29.57°C
6 weeks
21/03
28/04

1994
29.76°C
9 weeks
17/02
17/04

2002
29.52°C
7 weeks
07/03
21/04

2003
30.00°C
6 weeks
27/02
06/04

Fig. 1 Weekly sea surface

temperature around Moorea

from November 1981 to

December 2006. IGOSS-nmc

data courtesy of the Lamont-

Doherty Climate Center.

Arrows indicate bleaching

events, and the horizontal dotted

line indicates the thermal

threshold for Moorea (29.2�C).

For each event, the amplitude of

the temperature anomaly

(highest temperature) and its

duration (number of consecutive

weeks with temperature higher

than the threshold, and dates)

are indicated in boxes
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was treated as a statistical replicate (n = 4) in all temporal

contrasts. We used the Point Intercept Transect Method,

with points placed every 0.25 m, to estimate cover of each

category of benthic organisms. Data were collected once a

year in March–April. For further details on the sampling

design and methodology, see Adjeroud et al. (2002).

The significance of the interannual variability was

evaluated using the nonparametric test of Friedman,

because of the absence of normality in the data, and

because these data were not independent. The Wilcoxon

test was used in an a posteriori fashion to compare values

of two different years. We used Kruskal’s non metric

multidimensional scaling (MDS) to examine the interan-

nual variation in the composition of the coral assemblage

based on the Bray–Curtis dissimilarity index.

Results and discussion

The five disturbances had different impacts on the coral

assemblages. A significant decline in coral cover followed

the two disturbances of 1991. Coral cover (pooled among

genera) declined from 51.0 ± 9.5% (mean ± SD) in early

1991 to 24.2 ± 14.4% in 1992, and 22.5 ± 9.3% in 1993

(Fig. 2; Table 1). In contrast, the bleaching events of 1994,

2002, and 2003 had no detectable effects on coral cover,

even though the thermal anomalies causing these events

and their short-term impacts in term of bleaching preva-

lence were similar to the 1991 bleaching event (Salvat

1992; Hoegh-Guldberg and Salvat 1995; Penin et al. 2007;

Fig. 1). The decline in coral cover in the 4 years following

1991 is among the most rapid of this magnitude recorded

following natural disturbances. For instance, along the

north coast of Jamaica, coral cover at 7 m depth declined

from *75% in 1977–1979 to *40% in 1980 after Hurri-

cane Allen, and to *5% by 1993 (Hughes 1994). The

protracted loss of coral cover in Jamaica followed two

hurricanes, three bleaching events, a reduction of grazing

pressure and a potential pulse of nutrients which all

contributed to a dramatic increase of algal cover, from

*4% in 1977 to *92% in 1993 (Hughes 1994). On the

southern Great Barrier Reef, an ‘‘extreme’’ loss in coral

cover was also reported as a result of cyclones, from

*80% in 1987 to *10% in 1989 (Halford et al. 2004), and

in the eastern Indian Ocean, coral cover decreased from

*48% in 1998 to *11% in 1999 after the 1998 bleaching

event (Smith et al. 2008).

Between 1991 and 1994, the decline in coral cover at

TORS was accompanied by a rapid colonization by turf

algae (16.2 ± 5.5% in 1991 to 48.5 ± 2.5% in 1994;

Fig. 2). Turf algae are generally among the first to colonize

vacant space, but are often replaced by dense growths of

macroalgae (McManus and Polsenberg 2006; Done et al.
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Fig. 2 Variation in coral, turf, and macroalgal cover at Tiahura

between 1991 and 2006. The cyclone (December 1991) and the four

bleaching events (March–July 1991, 1994, 2002 and 2003) are

indicated. Dotted lines represent standard deviation

Table 1 Statistical significance (P value) of interannual variability in cover among years (Friedman tests), and of differences between select

pairs of years (Wilcoxon tests), for major taxa of corals and algae

All corals Acropora Montipora Pocillopora Porites Turf algae Macroalgae

Among years \0.001 \0.001 0.046 0.312 \0.001 \0.001 0.449

1991 vs. 1992 0.061 0.029 0.183 0.061 0.659 0.029 0.453

1991 vs. 1993 0.030 0.029 0.055 0.030 0.559 0.030 1.000

1991 vs. 1994 0.030 0.029 0.183 0.030 0.559 0.029 1.000

1994 vs. 1995 0.661 0.369 0.306 0.194 0.659 0.028 0.620

2002 vs. 2003 0.309 0.462 0.243 0.470 1.000 0.770 0.739

2003 vs. 2004 0.465 0.301 0.766 0.243 1.000 0.442 0.278

1991 vs. 2006 0.312 0.561 0.053 0.108 0.028 0.561 0.739
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2007). On TORS, however, a successional sequence of

algal growth was not observed, but instead, the cover of

algal turf decreased after 1994, and returned to the pre-

disturbance levels within a decade. This result suggests that

the availability of vacant space is not sufficient to cause a

persistent increase in algal cover, and that other factors,

such as a reduction in grazing pressure or an increase in

nutrients—that were not present at TORS—are necessary

for a phase change to macroalgal dominance (McManus

and Polsenberg 2006; Mumby et al. 2007).

For TORS, the response of coral populations to distur-

bances, and their recovery trajectories, differed among the

four dominant genera. Acropora was affected by the dis-

turbances of 1991, declining from 11.5 ± 2.6% in 1991 to

2.5 ± 1.7% in 1992, but its cover was only slightly

affected by subsequent bleaching events (Fig. 3; Table 1).

Acropora showed a high rate of recovery after the 1991

disturbances and until 2005, with pre-disturbance cover

restored by 1999. Montipora was also affected by the 1991

disturbances, but its cover declined further as a result of

two other bleaching events (1994 and 2002), and did not

show signs of recovery. Pocillopora was also affected by

the 1991 disturbances, declining from 25.0 ± 7.0% in

1991 to 10.5 ± 8.6% in 1992, thereafter with the cover

remaining relatively stable at *15%. In contrast to other

genera, the cover of Porites was unaffected by the five

disturbances, and its cover increased between 1991 and

2005, finally reaching 12.2 ± 2.3%, when it became the

second most dominant coral. Interestingly, massive Porites

has also been identified as an ecological ‘‘winner’’ in

Okinawa following the bleaching event of 1998 (Loya

et al. 2001), and in the Caribbean, P. astreoides (the

‘‘massive’’ Porites of this region) has also been a relative

winner over the last few decades of disturbances (Green

et al. 2008). Together, this evidence suggests it would be

productive to evaluate the biological characteristics

favoring the success of massive Porites in the face of

multiple disturbances.

The results of this long-term survey support the

hypothesis that the algal-dominated phase can represent a

state from which a rapid reversal is possible, or a transi-

tional state along a gradient of temporal changes (Bellwood

et al. 2006; Idjadi et al. 2006; Mumby et al. 2007). In

addition, our results reveal that corals can recover rapidly

following a dramatic decline. Such decadal-scale recovery

of coral cover has been documented at some locations

(Connell 1997; Halford et al. 2004, Emslie et al. 2008,

Sheppard et al. 2008), but our results are novel in
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demonstrating rapid recovery against a backdrop of ongo-

ing, high frequency, and large-scale disturbances (but see

Connell et al. 1997; Wakeford et al. 2008). At TORS, the

post-disturbance dynamic is associated with a shift in the

structure of the assemblages (Fig. 4). Thus, coral assem-

blages at TORS appear to be characterized by ecological

resilience in terms of overall coral cover, but plasticity in

terms of generic composition.

Tiahura is among the few reefs, all located in the Indo-

Pacific, that have shown the capacity to recover from

severe and recurrent disturbances (Connell 1997), and it

supports the hypothesis that some reefs will undergo

gradual changes in structure of their coral communities in

response to major stress rather than collapse abruptly (Loya

et al. 2001; Hughes et al. 2003; Wakeford et al. 2008).

Despite the optimism that the last 15 years of coral

dynamics at TORS engender, these results must be con-

sidered with caution, as most models predict an increase in

the frequency and severity of disturbances over the next

few decades (Pandolfi et al. 2003; Hoegh-Guldberg et al.

2007). Indeed, a significant outbreak of A. planci began in

Moorea immediately following the period covered by this

study (late 2006) (personal observation), and this ongoing

outbreak has reduced the coral cover on some outer reef

sites to \10% (in May 2008, PJ Edmunds, personal com-

munication). While it is too soon to evaluate the long-term

implications of this disturbance for TORS, we suspect that

the coral community in this location may regrow rapidly, at

least based on the abundance of coral recruits we have

found at near-by sites.
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