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a b s t r a c t

The Antarctic region is renowned for its isolated, unusual, diverse, and disharmonic marine fauna.

Holothuroids are especially diverse, with 187 species (including 51 that are undescribed) recorded south

of the Antarctic Convergence. This represents �4% of the documented Antarctic marine biota, and �10% of

the world’s holothuroid diversity. We present evidence that both inter-regional speciation with southern

cold-temperate regions and intra-regional diversification has contributed to species richness. The Antarctic

fauna is isolated, with few shallow-water Antarctic species known from north of the Convergence, yet several

species show recent transgression of this boundary followed by genetic divergence. Interchange at longer

time scales is evidenced by the scarcity of endemic genera (10 of 55) and occurrence of all six holothuroid

orders within the region. While most Antarctic holothuroid morphospecies have circum-polar distributions,

mtDNA sequence data demonstrate substantial geographic differentiation in many of these. Thus, most of the

37 holothuroid species recorded from shelf/slope depths in the Weddell Sea have also been found in

collections from Prydz Bay and the Ross Sea. Yet 17 of 28 morphospecies and complexes studied show

allopatric differentiation around the continent, on average into three divergent lineages each, suggesting that

morphological data fails to reflect the level of differentiation. Interchange and local radiation of colonizers

appear to have rapidly built diversity in the Antarctic, despite the potential of cold temperatures

(and associated long generation times) to slow the rate of evolution.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Arguably the most conspicuous and general biogeographic
trend on Earth is the latitudinal decrease in species diversity.
This trend is evident on land and sea, in animals and plants, in
shallow waters and even in the deep sea (Rex et al., 1993; Ricklefs
and Schluter, 1993). Although there is substantial variation in the
steepness of the latitudinal diversity cline as well as exceptions
(Barnard, 1991; Clarke, 1992), the pervasiveness of this cline has
led to considerable research exploring its causes and consequences
(Pianka, 1966; Stehli et al., 1969; Jablonski et al., 2006). For most
marine organisms the decline in diversity is steeper in the northern
than southern hemisphere, and the Antarctic biota poses some
of the most striking variations and exceptions (Clarke, 1992;
Brandt et al., 2007a,b).

The Antarctic region is arguably the most faunistically distinct part
of the world ocean. Isolated by the Antarctic Convergence, with
ll rights reserved.
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z (N. Davey),
temperatures hovering just above and below 01C, the region poses
great physiological challenges to marine life. As a result it has
developed an endemic and disharmonic biota reminiscent of islands,
with some parallel consequences. Noteworthy are the absence or low
diversity of certain taxa (e.g., balanomorph barnacles, decapod
crustaceans, cartilaginous and teleost fishes - with notable exception
of the endemic radiation of notothenioids), that may be excluded by
environmental conditions (Clarke and Johnston, 2003). Some of
these, most notably teleosts and brachyuran crabs, include
efficient durophagous predators that arose during the Mesozoic
marine revolution, and have greatly influenced the evolution of the
modern, shallow-water, tropical and temperate marine biota
(Vermeij, 1977, 1987).

In contrast, other groups (e.g. echinoderms, polychaetes, pycno-
gonids, and peracarids) are able to handle the physiologically and
ecologically challenging Antarctic environment and are strikingly
diverse (Clarke and Johnston, 2003; Rogers, 2007). Echinoderms are
especially abundant and conspicuous in the Antarctic, and represent
�10% of the recorded fauna (Clarke and Johnston, 2003:
4100 recorded benthic species). In comparison only 3.5% of 5640
marine species in the tropical Mariana Islands (Paulay, 2003), and
2.2% of the nearly 30,000 marine species in Europe are echinoderms
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Fig. 1. Map of Antarctica, Antarctic Convergence (line), and sampling locations
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(Costello et al., 2001). Even more strikingly, the Antarctic is home to
�20% of the world’s known pycnogonid species (Child, 1995).

Such high diversity requires ecological and evolutionary explana-
tions. The absence of many modern predators appears to have led to
an ecological release of some of their prey in the Antarctic. Ecological
release from durophagous predators may be responsible for the
abundance and diversity of ophiuroids, crinoids, and brachiopods in
the Antarctic benthos, that give the seascape a Paleozoic character
(Aronson and Blake, 2001; Aronson et al., 2009). Brandt (1999)
similarly argues that abundance and diversity of Antarctic peracarids
results from ecological release associated with the virtual absence of
decapods as both competitors and predators.

Ecological release does not directly drive diversity however, so
more proximal causes need to be considered for high species
richness. Species diversity arises from the balance between species
origination and extinction. Origination can be through speciation
or immigration, while extinction can be local or global. The time
available, together with rate (and variation in the rate) of origina-
tion and extinction, determine species richness. High diversity can
be the result of overall high origination rates, low extinction rates,
or long time available with a balance in rates favoring origination.

A notable feature of Antarctic marine life is its relative homo-
geneity. Circum-Antarctic distributions and broad depth-ranges are
noted characteristics of the fauna (Briggs, 1974; Pawson, 1994; Brey
et al., 1996). Broad ranges have been attributed to environmental
homogeneity, especially with depth, deep continental shelves, limited
stratification and mixing by vigorous, circum-Antarctic circulation
(Brandt et al., 2007a; Rogers, 2007). The main distributional boundary
delineating the region, the Antarctic Convergence, is itself traversed
by many species (Clarke et al., 2005).

The striking diversification that several Antarctic taxa have under-
gone contrasts with perceived lack of opportunities for isolation. High
rates of origination also seem unlikely from a thermodynamic
perspective, as mutation rates and speciation are temperature
dependent and decrease markedly with latitude (Allen et al., 2006).
However emerging data suggest that while some species show
circum-polar genetic homogeneity (Jarman et al., 2002; Thornhill
et al., 2008; Fraser et al., 2009), others have undergone geographic
differentiation (Held and Wägele, 2005; Raupach and Wägele, 2006;
Linse et al., 2007). The paucity of available geographically-extensive
samples has limited exploration of circum-Antarctic differentiation.

A glacial diversity pump, caused by periodic isolation and
reconnection of populations as ice sheets and their associated scour
expand and retract with glacial cycles, has been proposed as a
potential driver of speciation (Clarke and Crame, 1989). Low
extinction rates may be favored by release from predation. Time
available for speciation to act does not appear to be unusually long, as
regional refrigeration is relatively recent, and its onset is correlated
with the development of the modern Antarctic fauna, including the
loss of temperature sensitive groups, like crabs, present during
warmer geological epochs (Feldmann and Zinsmeister, 1984). The
onset of glacial conditions and likely radiation of Antarctic fauna
played out in roughly the same timeframe (Feldmann and
Zinsmeister, 1984; Aronson and Blake, 2001) as the radiation of
modern biota of coral reefs (Renema et al., 2008; Williams and Duda,
2008), i.e. �Eocene to present, with acceleration toward present day
conditions and biota in the Miocene.

Examination of large collections of Antarctic and Sub-Antarctic
holothuroids from Prydz Bay, the Heard/Kerguelen Plateau, the
Ross Sea, the Bellingshausen Sea, the Antarctic Peninsula and the
South Atlantic (Fig. 1), together with genetic analyses of putative
circum-Antarctic taxa across some of this range, allows us to assess
diversity and distribution of Antarctic holothuroid species. How
diverse are holothuroids in the Antarctic? Are circum-Antarctic
species really genetically contiguous or do they represent cryptic,
allopatric complexes?
This work results from the intersection of two large-scale
projects. O’Loughlin and coworkers are actively revising the
Antarctic holothuroid fauna by morpho-taxonomic means, and
have also documented much of the temperate holothuroid fauna of
Australia. Paulay and coworkers are generating sequence data on
available holothuroids to understand species limits and phyloge-
netic relationships. Both projects are connected with a major
revisionary effort on holothuroids, focused especially on the
order Aspidochirotida (see: http://www.guammarinelab.com/peet
cukes/index.html).
2. Methods

The Antarctic Convergence forms a major oceanographic
boundary and delineates the Antarctic biogeographic region
(Fig. 1). The South Shetland Islands, South Orkney Islands, South
Sandwich Islands, South Georgia, Bouvet Island, Heard Island and
McDonald Islands are considered to lie south of the Convergence.
The Kerguelen Islands lie at the Convergence. The Falkland Islands,
Prince Edward and Marion Islands, Crozet Islands, Amsterdam and
Saint-Paul Islands, Tierra del Fuego, and Macquarie Island are north
of the Convergence.

A comprehensive list of Antarctic holothuroid species from all
depths south of the Antarctic Convergence was compiled from
collections examined, and complemented from papers on Antarctic
holothuroids by: Lampert (1886), Théel (1886), Hérouard (1901),
Vaney (1906a, 1906b, 1906c, 1908, 1914), Ekman (1925, 1927),
Mortensen (1925), Ludwig and Heding (1935), Heding and Panning
(1954), Agatep (1967), Cherbonnier (1974), Belyaev (1975, 1989),
Hansen (1975), Belyaev and Mironov (1982), Gebruk (1983, 1988,
1993), Gutt (1991), Massin (1992), Gebruk and Shirshov (1994),
Smirnov and Bardsley (1997), Gebruk et al. (2003), O’Loughlin
(2002, 2009), Massin and Hétérier (2004), O’Loughlin and Ahearn
(2005, 2008), O’Loughlin (2009).

The following holothuroid collections have been determined
using morpho-taxonomic methods. Collection abbreviations
are as follows: NHM¼Natural History Museum; NIWA¼
New Zealand National Institute of Water and Atmospheric Research;
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NMV¼Museum Victoria; NMNH¼US National Museum of Natural
History.
1.
 The southern Atlantic Ocean collections (at NHM) from The
Terra Nova Expedition (1910–13), and the Discovery Investiga-
tions in the first decades of the last century by the RRS Discovery

and RSS William Scoresby, are being determined by MO’L with
volunteer assistants Melanie Mackenzie and Emily Whitfield.
2.
 The British, Australian and New Zealand Antarctic Research
Expedition (BANZARE, 1929 and 1930) collections, principally
off Kerguelen and eastern Antarctica (401–1801E), were deter-
mined by MO’L (O’Loughlin, 2009).
3.
 The US Antarctic Research Program (USARP) collections (at
NMNH) were determined by MO’L and the late Cynthia Ahearn
(O’Loughlin and Ahearn, 2005, 2008).
4.
 The Australian National Antarctic Research Expedition (ANARE)
collections from Prydz Bay (1985, 1987, 1991, 1993, 1997) and
Heard I. (1985, 1992, 2003) (at NMV) were determined by MO’L
with volunteer assistants Melanie Mackenzie and Emily
Whitfield.
5.
 The BIOROSS Tangaroa 2004 expedition collection (at NIWA)
from the Ross Sea was determined by MO’L and ND.
6.
 The Spanish Antarctic Benthos (BENTART) 2003 and 2006 collec-
tions (currently at University of Málaga) by R/V Hesperides from
the Bellingshausen Sea and Antarctic Peninsula were determined
by MO’L with Eugenia Manjón-Cabeza (O’Loughlin et al., 2009).
7.
 The collections by the BIOPEARL I and II British Antarctic Survey
(BAS, 2006 and 2008, to be housed at NHM) expeditions to the
Amundsen and Scotia Seas were determined by MO’L with
volunteer assistants Melanie Mackenzie and Emily Whitfield.
8.
 The NIWA IPY Census of Antarctic Marine Life (CAML) 2008
collection from the Ross Sea and Scott and Admiralty Seamounts
was determined by MO’L and ND.
9.
 The US Antarctic Marine Living Resources (US AMLR 2003, 2009)
collections by R/V Yuzhmorgeologiya, and International
Collaborative Expedition to collect and study Fish Indigenous
to Sub-Antarctic Habitats (ICEFISH 2004) collection by the RV
Nathaniel B. Palmer, donated to NMV by Susie Lockhart, and US
AMLR 2006 collection lodged at NMNH by Susie Lockhart, all
from the southern Atlantic Ocean, were determined by MO’L.

Although conditions of preservation vary among these collec-
tions, many were taken relatively recently (often as part of CAML
efforts) and preserved in alcohol (sometimes after a period of
freezing). This effort is leading to a complete systematic reassess-
ment of the Antarctic sea cucumber fauna, and is being published in
a series of revisions and subregional taxonomic reviews
(O’Loughlin, 2002, 2009; O’Loughlin and Ahearn, 2005, 2008;
O’Loughlin et al., 2009). Many species remain undescribed, but
have been studied, but not yet published upon (see below).

Tissue samples from identified, vouchered specimens were
sequenced for a portion of the mitochondrial Cytochrome C Oxidase
subunit I gene. The sequencing effort we are pursuing on holothuroids
is bottom up: i.e. evaluating within species variation and cryptic
species first, followed by selection of representatives for broader
phylogenetic study. COI is the first pass in this effort, and insufficient
coverage at other loci precludes discussing these in this study. DNA
extraction, primers, PCR conditions, and sequencing protocols used
have been described previously (O’Loughlin et al., 2007). More recent
samples were extracted and sequenced at the Smithsonian’s LAB
facility using robotic methods. For these, genomic DNA was extracted
from up to �20 mg minced preserved tissue via an automated
phenol:chloroform extraction on an Autogenprep965 (Autogen,
Holliston, MA), using the mouse tail tissue protocol, with a final
elution volume of 50 mL. For newer samples we used the new
echinoderm primers developed by Hoareau and Boissin (2010).
Geneiouss was used for sequence editing and alignment for recent
samples. Sequences are deposited in GenBank under accession
numbers HM196536-HM196705.

Of 467 specimens sequenced for COI from the Antarctic region
and 290 specimens from various Subantarctic and southern
temperate localities, we selected 352 Antarctic and 23 Subantar-
tic/southern temperate specimens for analysis. These represent all
species or species complexes known from multiple localities
separated by 1000 km, excluding the taxonomically challenging
genus Pseudostichopus (characterized by an almost complete lack of
ossicles). The selected Subantarctic samples were included because
they fell within Antarctic species complexes, resulting in a total of
375 OTUs. Voucher information for all sequenced specimens are
given in Online Supplementary Materials.

We analyzed the sequence data with RAxML (Stamatakis, 2006)
using the GTRGAMMA model of molecular evolution. We selected
the tree with the highest likelihood score based on 20 independent
runs. We ran 200 bootstrap replicates and estimated the frequency
of the edges for the tree selected in this set of replicates. We
extracted each species-group from the tree and prepared the
figures using the packages ape 2.5-1 (Paradis et al., 2004) and
phylobase (Bolker et al., 2010) in R 2.10.1 (R Development Core
Team, 2009).

The resulting phylogeny was examined for differentiation of
Evolutionary Significant Units (ESUs; Moritz, 1994). We define
ESUs as taxa that are reciprocally monophyletic in at least one
genetic marker and have a second, independent genetic marker,
morphological character, color, or distribution that is differentiated
in a congruent manner with the first marker (Meyer and Paulay,
2005; Malay and Paulay, 2010). ESUs thus meet the criteria for the
phylogenetic species concept. When ESUs are sympatric, they also
conform to the biological species concept.
3. Results

3.1. Diversity based on morpho-taxonomic study

Examination of collections and literature reveals 187 species of
holothuroids (51 undescribed) currently known from all depths in
the Antarctic region (Tables 1 and 2). The suspension feeding
dendrochirotids (83 species) are most diverse, followed by the deep
water, deposit feeding elasipodids (47 species). Several areas
within Antarctica have received focused attention as follows.

Gutt (1991) listed Weddell Sea holothuroids to a depth of
1180 m, and this depth limit is used in this work when comparing
distributions. The Weddell Sea has been intensively surveyed for
holothuroid species, and 37 are reported to 1180 m in the works of
Gutt (1991, 33 species), Massin (1992, 3 new species) and Massin
and Hétérier (2004, 1 new species). Since the work of Gutt (1991)
there have been synonymies and reassignments to other genera
(O’Loughlin et al., 2009). Some of the determinations by Gutt
(1991) have been subjectively interpreted here by MO’L as follows.

The table ossicles in Mesothuria bifurcata and Mesothuria lactea

(Théel, 1886) are similar, but the distal spires of the tables in
Mesothuria bifurcata are frequently bifurcate. Mesothuria lactea is
not known in the high Antarctic, and the species in question is
judged to be Mesothuria bifurcata.

Molpadiodemas crinitus is similar in appearance to
Pseudostichopus villosus Théel, 1886. The former is abundant at
shelf and upper slope depths to �1000 m in the high Antarctic,
while the latter typically occurs deeper than 2000 m in other parts
of the world ocean (see O’Loughlin and Ahearn, 2005). The high
Antarctic species is judged to be Molpadiodemas crinitus.



Table 1
Holothuroid morpho-species recognized from all depths in the Antarctic

APODIDA
Chiridotidae Östergren

Kolostoneura species (S Orkney Is, 506 m; in preparation)

Paradota weddellensis Gutt, 1990

Scoliorhapis species (10 tentacles; S Shetland Is, 1544 m; in preparation)

Scoliorhapis species (12 tentacles; Shag Rocks, 206 m; in preparation)

Taeniogyrus antarcticus Heding, 1931

Taeniogyrus contortus (Ludwig, 1875)

Taeniogyrus magnibaculus Massin and Hétérier, 2004

Taeniogyrus species (10 tentacles; Prydz Bay, 109–830 m; in preparation)

Myriotrochidae Théel

Acanthotrochus antarcticus Belyaev and Mironov, 1981

Acanthotrochus species (S Orkney Is, 2914 m; Bohn in Gebruk et al., 2003)

Achiridota species (Prydz Bay, 788 m; in preparation)

Myriotrochus antarcticus Smirnov and Bardsley, 1997

Myriotrochus bipartitodentatus (Belyaev and Mironov, 1978)

Myriotrochus hesperides O’Loughlin and Manjón-Cabeza, 2009

Myriotrochus macquoriensis Belyaev and Mironov, 1981

Myriotrochus species (Ross Sea, 2283 m; in preparation)

Myriotrochus species (S Orkney Is, 2084–5190 m; Bohn in Gebruk et al., 2003)

Neolepidotrochus variodentatus (Belyaev and Mironov, 1978)

Prototrochus species (Shag Rocks, 206 m; in preparation)

Prototrochus species (S Shetland Is, 192–1544 m; in preparation)

Prototrochus species (S Orkney Is, 2375–5190 m; Bohn in Gebruk et al., 2003)

Synaptidae Burnmeister

Labidoplax species (S Orkney Is, 2893–3916 m; Bohn in Gebruk et al., 2003)

ASPIDOCHIROTIDA
Synallactidae Ludwig

Bathyplotes bongraini (Vaney, 1914)

Bathyplotes gourdoni (Vaney, 1914)

Bathyplotes moseleyi (Théel, 1886)

Bathyplotes cf moseleyi (Théel, 1886) (Ross Sea; this work)

Bathyplotes species 1 (Amundsen Sea; this work)

Bathyplotes species 2 (Bellingshausen Sea, Ross Sea; this work)

Bathyplotes species 3 (Scott Seamount; this work)

Mesothuria bifurcata Hérouard, 1901

Molpadiodemas crinitus O’Loughlin and Ahearn, 2005

Molpadiodemas involutus (Sluiter, 1901)

Molpadiodemas morbillus O’Loughlin and Ahearn, 2005

Molpadiodemas pediculus O’Loughlin and Ahearn, 2005

Molpadiodemas translucens O’Loughlin and Ahearn, 2005

Molpadiodemas villosus (Théel, 1886)

Molpadiodemas violaceus (Théel, 1886)

Paelopatides species (in Ekman 1927)

Pseudostichopus mollis Théel, 1886

Pseudostichopus peripatus (Sluiter, 1901)

Pseudostichopus spiculiferus (O’Loughlin, 2002)

Pseudostichopus species (Heard I.; this work)

Synallactes robertsoni Vaney, 1908

synallactid species (Heard I.; this work)

DACTYLOCHIROTIDA
Ypsilothuriidae Heding

Echinocucumis hispida (Barrett, 1857)

Echinocucumis kirrilyae O’Loughlin, 2009

Echinocucumis species (Heard I.; this work)

dactylochirotid species (Ross Sea; this work)

DENDROCHIROTIDA
Cucumariidae Blainville

Cladodactyla crocea (Lesson, 1830)

Cladodactyla crocea var croceoides (Vaney, 1908)

Clarkiella deichmannae O’Loughlin, 2009

Cucamba psolidiformis (Vaney, 1908)

Cucumaria dudexa O’Loughlin and Manjón-Cabeza, 2009

‘‘Cucumaria georgiana (Lampert, 1886) group’’ (by Gutt, 1990) (? 6 species)

cucumariid species (Heard I.; this work)

cucumariid species 1 (Shag Rocks; this work)

cucumariid species 2 (Shag Rocks; this work)

Heterocucumis denticulata (Ekman, 1927)

Heterocucumis godeffroyi (Semper, 1867)

Heterocucumis steineni (Ludwig, 1898)

Heterocucumis species (Prydz Bay; this work)

Heterocucumis species (S Shetland Is; this work)

Microchoerus splendidus Gutt, 1990

Neopsolidium kerguelensis (Théel, 1886)

Parathyonidium incertum Heding, 1954

Table 1. (continued )

Parathyonidium species (Prydz Bay; this work)

Pseudocnus intermedia (Théel, 1886)

Pseudocnus laevigatus (Verrill, 1876)

Pseudocnus perrieri (Ekman, 1927)

Pseudocnus serrata (Théel, 1886)

Pseudocnus species (Ross Sea; this work)

Pseudopsolus ferrari Bell, 1908

Psolicrux coatsi (Vaney, 1908)

Psolicrux iuvenilesi O’Loughlin and Manjón-Cabeza, 2009

Psolidiella mollis (Ludwig and Heding, 1935)

Staurocucumis abyssorum (Théel, 1886)

Staurocucumis liouvillei (Vaney, 1914)

Staurocucumis turqueti (Vaney, 1906)

Staurocucumis species (Antarctic Peninsula; this work)

Trachythyone bouvetensis (Ludwig and Heding, 1935)

Trachythyone cynthiae O’Loughlin, 2009

Trachythyone lechleri (Lampert, 1885)

Trachythyone mackenzieae O’Loughlin, 2009

Trachythyone maxima Massin, 1992

Trachythyone muricata Studer, 1876

Trachythyone parva (Ludwig, 1875)

Trachythyone species 1 (S Shetland Is; this work)

Trachythyone species 2 (Amundsen Sea; this work)

Paracucumidae Pawson and Fell

Crucella hystrix Gutt, 1990

Crucella scotiae (Vaney, 1906)

Paracucumis turricata (Vaney, 1906)

Psolidae Forbes

Echinopsolus acanthocola Gutt, 1990

Echinopsolus parvipes Massin, 1992

Echinopsolus species (Scotia Sea; this work)

Ekkentropelma brychia Pawson, 1971

Psolidium emilyae O’Loughlin and Ahearn, 2008

Psolidium gaini Vaney, 1914

Psolidium incubans Ekman, 1925

Psolidium normani O’Loughlin and Ahearn, 2008

Psolidium pawsoni O’Loughlin and Ahearn, 2008

Psolidium poriferum (Studer, 1876)

Psolidium schnabelae O’Loughlin and Ahearn, 2008

Psolidium tenue Mortensen, 1925

Psolidium whittakeri O’Loughlin and Ahearn, 2008

Psolus antarcticus (Philippi, 1857)

Psolus arnaudi Cherbonnier, 1974

Psolus belgicae Hérouard, 1901

Psolus charcoti Vaney, 1906

Psolus cherbonnieri Carriol and Féral, 1985

Psolus dubiosus Ludwig and Heding, 1935

Psolus ephippifer Thomson, 1876

Psolus figulus Ekman, 1925

Psolus granulosus Vaney, 1906

Psolus koehleri Vaney, 1914

Psolus murrayi Théel, 1886

Psolus paradubiosus Carriol and Féral, 1985

Psolus parvulus Cherbonnier, 1974

Psolus patagonicus Ekman, 1925

Psolus punctatus Ekman, 1925

Psolus squamatus var segregatus Perrier, 1905

Psolus species (Marie Byrd Seamount; in preparation)

Psolus species (Shag Rocks; in preparation)

Psolus species (South Georgia; this work)

Psolus species (S Shetland Is; this work)

Psolus species (S Orkney Is; in preparation)

Psolus species (S Orkney Is; this work)

ELASIPODIDA
Deimatidae sensu Ekman

Oneirophanta mutabilis mutabilis Théel, 1879

Oneirophanta setigera (Ludwig, 1894)

Elpidiidae Théel

Amperima insignis (Théel, 1882)

Amperima naresi (Théel, 1882)

Amperima robusta (Théel, 1882)

Amperima velacula Agatep, 1967

Ellipinion facetum (Agatep, 1967)

Ellipinion papillosum (Théel, 1879)

Elpidia decapoda Belyaev, 1975

Elpidia glacialis sundensis Hansen, 1956

Elpidia cf glacialis Théel, 1876 (Amundsen Sea, 542–1518 m; this work)

P. Mark O’Loughlin et al. / Deep-Sea Research II 58 (2011) 264–275 267



Table 1. (continued )

Elpidia gracilis Belyaev, 1975

Elpidia lata Belyaev, 1975

Elpidia ninae Belyaev, 1975

Elpidia theeli Hansen, 1956

Kolga cf hyalina Danielssen and Koren, 1879 (S Orkney Is, 1656 m; this work)

Peniagone affinis Théel, 1882

Peniagone diaphana (Théel, 1882)

Peniagone herouardi Gebruk, 1988

Peniagone incerta (Théel, 1882)

Peniagone mossmani Vaney, 1908

Peniagone papillata Hansen, 1975

Peniagone purpurea (Théel, 1882)

Peniagone vignoni Hérouard, 1901

Peniagone vitrea Théel, 1882

Peniagone willemoesi (Théel, 1882)

Peniagone cf willemoesi (Théel, 1882) (Ross Sea; this work)

Peniagone wiltoni Vaney, 1908

Protelpidia murrayi (Théel, 1879)

Rhipidothuria racovitzai Hérouard, 1901

Rhipidothuria verrucosa (Théel, 1879)

Scotoplanes globosa (Théel, 1879)

Laetmogonidae Ekman

Apodogaster alcocki Walsh, 1891

Laetmogone wyvillethomsoni Théel, 1879

Laetmogone species (Scotia Sea; in Gebruk, 1993)

Laetmogone species (Ross Sea; this work)

Laetmogone cf scotoeides (H. L. Clark, 1913) (Ross Sea; this work)

Pannychia species (Ross Sea; this work)

Psychropotidae Théel

Benthodytes sanguinolenta Théel, 1882

Benthodytes species (Scotia Sea; in Gebruk et al., 2003)

Psycheotrephes exigua Théel, 1882

Psycheotrephes recta (Vaney, 1908)

Psychropotes longicauda Théel, 1882

Psychropotes scotiae (Vaney, 1908)

Psychropotes species (Scotia Sea; in Gebruk, 1993)

swimming holothuroid species (? 2)

MOLPADIDA
Molpadiidae Théel

Molpadia abyssicola Pawson, 1977

Molpadia antarctica (Théel, 1886)

Molpadia discors Pawson, 1977

Molpadia liska Pawson, 1977

Molpadia musculus Risso, 1826

Molpadia species 1 (Ross Sea, Amundsen Sea; this work)

Molpadia species 2 (Admiralty Seamount; this work)

Trochostoma species (in Ekman, 1927)

Caudinidae Heding

Paracaudina species (Heard I.; this work)

Table 2
Documented species richness of Antarctic holothuroids.

Order Described Undescribed Total

Apodida 10 12 22

Aspidochirotida 15 7 22

Dactylochirotida 2 2 4

Dendrochirotida 66 17 83

Elasipodida 38 9 47

Molpadida 5 4 9

TOTAL 136 51 187

Table 3
Holothuroid species reported from the Weddell Sea to 1180 m.

APODIDA
Paradota weddellensis Gutt, 1990

Taeniogyrus contortus (Ludwig, 1875)

Taeniogyrus magnibaculus Massin and Hétérier, 2004

ASPIDOCHIROTIDA
Bathyplotes bongraini Vaney, 1914

Bathyplotes gourdoni (Vaney, 1914)

Mesothuria bifurcata Hérouard, 1901

Molpadiodemas crinitus O’Loughlin and Ahearn, 2005

Pseudostichopus spiculiferus (O’Loughlin, 2005)

DENDROCHIROTIDA
Cucamba psolidiformis (Vaney, 1908)

Crucella hystrix Gutt, 1990

Crucella scotiae (Vaney, 1906)

Cucumaria acuta Massin, 1992

‘‘Cucumaria georgiana (Lampert, 1886) group’’ (by Gutt, 1990)

Echinopsolus acanthocola Gutt, 1990

Echinopsolus parvipes Massin, 1992

Heterocucumis denticulata (Ekman, 1927)

Heterocucumis steineni (Ludwig, 1898)

Microchoerus splendidus Gutt, 1990

Paracucumis turricata (Vaney, 1906)

Psolicrux coatsi (Vaney, 1908)

Psolidiella mollis (Ludwig & Heding, 1935)

Psolidium gaini Vaney, 1914

Psolidium pawsoni O’Loughlin and Ahearn, 2008

Psolus antarcticus (Philippi, 1857)

Psolus charcoti Vaney, 1906

Psolus dubiosus Ludwig & Heding, 1935

Staurocucumis liouvillei (Vaney, 1914)

Staurocucumis turqueti (Vaney, 1906)

Trachythyone bouvetensis (Ludwig & Heding, 1935)

Trachythyone maxima Massin, 1992

Trachythyone parva (Ludwig, 1875)

ELASIPODIDA
Elpidia cf glacialis Théel, 1876

Laetmogone wyvillethomsoni Théel, 1879

Peniagone vignoni Hérouard, 1901

Protelpidia murrayi (Théel, 1879)

Rhipidothuria racowitzai Hérouard, 1901

MOLPADIDA
Molpadia musculus Risso, 1826
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Pseudostichopus spiculiferus is typically covered with a mat of
sponge spicules, and is abundant in the high Antarctic. Gutt (1991)
referred to sand grain cover of Pseudostichopus mollis Théel, 1886
specimens, and sponge spicule cover of Pseudostichopus villosus

Théel, 1886 specimens in the Weddell Sea. Pseudostichopus mollis

and Pseudostichopus villosus are typically not covered by sand
grains or sponge spicules. The sponge spicule covered species is
judged here to be Pseudostichopus spiculiferus.
The type locality for Psolidium pawsoni is the Weddell Sea.
Psolidium incertum (Théel, 1886) was judged to be a junior synonym
of Psolidium poriferum (Studer, 1876) by O’Loughlin and Ahearn
(2008). It occurs typically on the Heard/Kerguelen plateau. The high
Antarctic Psolidium tenue Mortensen, 1925 was raised out of
synonymy by O’Loughlin and Ahearn (2008), and may occur in
the Weddell Sea. The species in question is judged to be most
probably Psolidium pawsoni.

A revision of the Gutt (1991) list, with the addition of the four
subsequent new species, is given in Table 3.

Of the 37 holothuroid species reported for the Weddell Sea
(Table 3), 32 have been found in Prydz Bay. The 5 species not found
to date in Prydz Bay are: Elpidia cf. glacialis, Psolidiella mollis, Psolus

antarcticus, Trachythyone maxima, Trachythyone parva. Nine
additional species have been found in Prydz Bay, three described
recently by O’Loughlin and Ahearn (2008), two by O’Loughlin
(2009), and four remain undescribed.

In the Ross Sea, 31 of the 37 Weddell Sea holothuroid species
have been found. The six species not found to date in the Ross Sea
are: Echinopsolus parvipes, Elpidia cf. glacialis (found at 3386-
3398 m), Mesothuria bifurcata, Paradota weddellensis, Rhipidothuria

racovitzai, Trachythyone parva. Thirteen additional species have
been found in the Ross Sea (to 1180 m), of which eight are
undescribed.



P. Mark O’Loughlin et al. / Deep-Sea Research II 58 (2011) 264–275 269
Of the 21 holothuroid species listed for the Heard/Kerguelen
Islands, only 6 occur on the Antarctic continental coast; only one at
Bouvet Island; but four in the Magellanic region of South America.
The species common to the Magellanic Region (north of the
Antarctic Convergence) and the Heard/Kerguelen Islands (at the
Convergence) are: Heterocucumis godeffroyi; Psolus paradubiosus;
Taeniogyrus contortus; Trachythyone lechleri. Of these only Taenio-

gyrus contortus has been found on the Antarctic continental coast.

3.2. Genetic results

Twenty-nine species complexes, represented by 375 specimens,
included samples from multiple localities at least 1000 km apart
(Table 4, Fig. 2). We define species complexes for this study as
clades whose members share the same morpho-specific
identification, or that have different identifications but are
within 5% K2P pair-wise distance in COI. Twenty-eight of these
are represented by multiple samples within the Antarctic Region,
while seven include samples from within the region as well as
north of the Antarctic Convergence.

Seventeen of 28 species complexes sampled from around
Antarctica show reciprocally monophyletic differentiation among
localities and thus are comprised of multiple ESUs, while 11 do not.
In several of these 17 all major localities sampled host reciprocally
monophyletic populations, although sample sizes are often small
(Table 4, Fig. 2). Level of inter-ESU genetic differentiation is
typically substantially greater than intra-ESU variation, further
demonstrating that these populations have been on independent
evolutionary trajectories. One additional species, Laetmogone

wyvillethomsoni shows two genetic clusters that appear to
stratify by depth (from 1620-1990 m vs. 2281-3485 m).

Five of seven taxa sampled across the Antarctic Convergence
show differentiation. The five that are differentiated include eight
ESUs north of the Convergence. The Psolus antarcticus complex
shows remarkably little differentiation among populations from
Table 4
Antarctic species sequenced from more than one locality.

Locations arranged W to E in light blue from S, in pale yellow from N, of Antarctic Converg

differently. cpx¼complex, denoting multiple identified morphospecies in group (see text
the Ross Sea, the Chatham Rise and Tristan da Cunha, while two
specimens sampled of an unidentified Paracaudina species are only
1.4% divergent (K2P pairwise) between Heard Island and SE
Australia.

The 29 species complexes studied are comprised of 39 nominal
species (see below), representing 71 genetic ESUs. Most of the ESUs
are allopatric to each other and thus their species-status is
currently subjective. However 12 are sympatric with other ESUs
within larger species complexes (Table 4), and thus likely represent
full biological species.
3.3. Morphological and genetic species delineations

Although there was good correspondence between morpholo-
gical and genetic species delineations, ESUs defined on mtDNA
sequences did not always correspond with morphologically iden-
tified species.

First, several morphospecies were complexes of multiple,
geographically differentiated ESUs: Peniagone incerta, Benthodytes

sanguinolenta, Laetmogone wyvillethomsoni, Staurocucumis liouvillei,

Pannychia moseleyi, Psolicrux coatsi, Mesothuria bifurcata, Molpadia

musculus, Cucumba psolidiformis, Trachythyone bouvetensis, Psolus

charcoti, Crucella hystrix, Crucella scotiae, and Psolidium gaini. While
some of these complexes show relatively shallow genetic differentia-
tion among populations, others are comprised of deeply differentiated
lineages, sometimes including sympatric clades. For example the 16
specimens sequenced of the supposedly cosmopolitan (described
from the Mediterranean) Molpadia musculus, included two Antarctic
and three Australian ESUs up to 23% (pairwise K2P) divergent.
Molpadia species are notorious for their difficult taxonomy, a result
of simple morphology (no tube feet, smooth body wall, simple
tentacles) and ossicles that change and deteriorate with age
(Pawson, 1977). Thus it is not surprising that traditional taxonomic
characters would fail in species delineations.
ence. Number of specimens sampled given; each ESU in a species complex is colored

). Complexes with sympatric ESUs are listed on multiple lines to separate these ESUs.
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Fig. 2. Phylogenetic relationships of species complexes studied based on Maximum Likelihood estimation of COI sequence data (see Methods for details). Scale: distance based

on expected number of substitutions per site under the GTR+GAMMA model. Bootstrap confidence indicated by black spot on node: 495%, grey spot on node: 475%.

Locations color marked, OTUs marked with region-location-sample as follows: 1: Antarctic, 2: Subantarctic/cold temperate. AmS: Amundsen Sea, AntP: Antarctic Peninsula,

Bell: Bellingshausen Sea, Bou: Bouvet Island, Hea: Heard Island, MByrd: Mairie Byrd Seamounts, Pow: Powell Basin, Ros: Ross Sea, SGe: South Georgia, SOrk: South Orkney

Islands, SSa: South Sandwich Islands, SSh: South Shetland Islands, Chat: Chatman Islands, Falk: Falkland Islands, NWA: Northwest Australia, NZ: New Zealand, SEA: Southeast

Australia, Tris: Tristan da Cunha Island, WA: Western Australia. ESUs indicated by vertical lines beside species complex (Table 4) designations.
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Fig. 2. (Continued)
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Second, in four complexes genetic and morphological identifi-
cations were inconsistent. In these, multiple species were initially
identified, but species boundaries did not correspond well with
mtDNA delineated ESUs. These are the Bathyplotes moseleyi com-
plex (including specimens initially identified as B. bongraini and
B. gourdoni), the Psolidium tenue complex (including some
P. pawsoni and P. whittakeri, as well as P. poriferum reliably
identified from Heard Island that falls as an ESU among these
taxa), the Psolus antarcticus and dubiosus complexes (also including
some P. cherbonnieri and P. arnaudi), and the ‘‘Cucumaria georgiana’’
complex (including some C. attenuata and C. acuta). All four of these
complexes are taxonomically challenging groups, that appear to
have differentiated fairly recently, and require additional study.
4. Discussion

Holothuroids are remarkably diverse in the Antarctic region: the
187 morpho-species recorded (Table 1) represent �10% of the
known global fauna of �1700 sea cucumbers (Paulay et al.,
unpublished data). Genetic results show a substantial additional
diversity of cryptic species; with 74 ESUs evident among the
limited samples examined of 39 named species. Integrative
taxonomic approaches, utilizing traditional morphological
characters, field appearance and biology, and DNA sequence
data, are demonstrating that cryptic species are quite pervasive
and diverse among sea cucumbers (e.g. Uthicke et al., 2004;
Michonneau et al., 2008). In numerous species groups ossicles
are not sufficiently variable to distinguish species defined on the
basis of field and genetic characteristics. External morphological
characteristics can get badly damaged by sampling gear, especially
in taxa with soft, even gelatinous body walls, further constraining
possibilities for morphological identification. With specimens
resulting mostly from rough, ship-based sampling methods,
limited availability of live/fresh material for specialists, and no
previous genetic studies, it is not surprising that Antarctic
holothuroid taxonomy and diversity is in need of reevaluation.
High diversity is also reflected in the importance of sea cucumbers
in the biota: almost 4% of known Antarctic benthic species are sea
cucumbers (Clarke and Johnston, 2003).

Local holothuroid diversity is also high, with 37 species
documented in the Weddell Sea, 41 species in Prydz Bay, and 43
in the Ross Sea, from shallow to moderately deep waters (to 1180 m
to facilitate comparisons). Such high local diversity compares with
that of coral reefs, although Antarctic compilations are across a
broader depth range than available at, or compiled for, tropical
locations. For example the well studied holothuroid fauna of the
Mariana Islands, not far from the global marine diversity center, has
47 species (Paulay, 2003); while 114 species are recorded from
shallow waters of the entire tropical insular Pacific (Pawson, 1995).

What is the source of this diversity? Conditions in the Antarctic are
clearly favorable for holothuroids, and for echinoderms in general.
That these animals handle the physical conditions of the region well is
evidenced by the taxonomic breadth of the fauna, as well as the
abundance, even local dominance of many species. All six orders of
holothuroids are represented in the Antarctic, 13 of the 25 currently
recognized families, and a broad range of genera and species. Thus
conditions in the Antarctic do not seem to exclude many major groups
of holothuroids. Abundant planktonic productivity provides ample
food resources for deposit and suspension feeders at least seasonally,
and some high latitude holothuroids have the ability ‘‘shut down’’
during unfavorable winter conditions, even undergoing visceral
atrophy (Fankboner and Cameron, 1985). Echinoderms are not
alone in their success in the Antarctic; other taxa that are un-
usually diverse include pycnogonids, amphipods, and polychaetes
(Child, 1995; Clarke and Johnston, 2003).
Suitable ecological conditions do not in themselves lead to
diversity. To build diversity, species have to enter the biota through
dispersal or to diversify in situ. Both are important for holothuroids.
The Antarctic Convergence poses a filter barrier to marine life, but is
expressed most strongly as a surface feature, so is less effective in deep
than shallow water (Brandt et al., 2007b). While the shallow faunas
south and north of the Convergence are largely distinct, the
Convergence is not a formidable barrier to taxa that do well in
polar seas (Clarke et al., 2005). Islands near the boundary of the
Convergence, such as the Heard-Kerguelen group, have intermediate
faunas as demonstrated above, mixing high Antarctic and cold
temperate elements in roughly equal proportions. The broad
representation of families and orders in the Antarctic fauna shows
this connection at deeper phylogenetic levels. There are relatively few
genera restricted to the Antarctic: 45 of the 55 genera present are also
recorded north of the Convergence. Not surprisingly 9 of the 10
endemic genera are dendrochirotids, a generally shallow water group,
indicating that the barrier is stronger in neritic waters.

Filter barriers like the Antarctic Convergence can facilitate
diversification by inter-regional speciation. Dispersal and diver-
gence across the barrier can build diversity in both Antarctic and
cold temperate waters. The great diversity and radiation of south-
ern temperate holothuroids, especially in the Australian region
(O’Loughlin and O’Hara, 1992; Rowe and Gates, 1995), provides a
rich fauna for biotic interchange to draw on. At least seven
holothuroid morphospecies traverse the Convergence among the
39 sampled. Five of these have divergent (and sometimes multiple,
divergent) ESUs across this boundary indicating past dispersal
followed by differentiation, while two (Psolus antarcticus complex,
Paracaudina sp.) show little genetic differentiation indicating
recent or ongoing gene flow (Fig. 2). Genetic connections with
differentiation are also evident in other species studied across the
Convergence (e.g., Hunter and Halanych, 2008; Wilson et al., 2009).

In situ diversification has also been substantial. Powerful circum-
Antarctic currents have facilitated the dispersal of marine life and
together with the prevalence of circum-Antarctic morphospecies,
would suggest that allopatric differentiation has been limited
(Briggs, 1974; Pawson, 1994). As the reviewed faunistic comparisons
demonstrate, there is substantial homogeneity around Antarctica:
many holothuroid morpho-species have circum-polar distributions.
However, genetic scrutiny demonstrates that circum-Antarctic
differentiation is pervasive among these circumpolar holothuroids,
with 17 of 28 species complexes sampled showing differentiation
around Antarctica. Even with the limited geographic sampling on hand,
these 17 complexes encompass 51 ESUs within the Antarctic region, or
on average 3 ESUs per morpho-species (Table 4). Additional sampling
will no doubt challenge the validity of some ESUs, while uncovering
others. Overall however the story is clear: the Antarctic holothuroid
fauna is substantially more diverse and geographically differentiated
than previously documented. The numerous islands, seas, and other
isolated habitats create ample opportunities for speciation, facilitated
by the transport potential of powerful currents. Allopatric
differentiation around the polar region may have been facilitated by
contraction of populations to select refugia during the even more
extreme environments prevalent during glacial times, and have
substantially contributed to the radiation of marine life in the region
(Clarke and Crame, 1992; Briggs, 2003; Brandt et al., 2007b). Thus
conditions for speciation are ideal: sufficient dispersal to spread
populations, yet not enough to prevent their differentiation
(cf. Paulay and Meyer, 2002). The large number of relatively isolated
habitats allows relatively contemporaneous differentiation of multiple
populations, thus getting around even potential thermodynamic rate
limitations for evolutionary diversification at these cold latitudes.

Evidence for circum-Antarctic differentiation and diversifica-
tion is also emerging from other genetic studies. While little
differentiation has been found in pelagic taxa (Zane et al., 1998;
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Jarman et al., 2002), brooding species that lack pelagic stages,
including philobryid bivalves (Linse et al., 2007) and isopods (Held
and Wägele, 2005; Raupach and Wägele, 2006), show substantial
allopatric genetic structuring. Genetic differentiation around the
continent has also been demonstrated in a benthic octopod with
presumed benthic paralarvae (Allcock et al., 1997), and southern
bull kelp (Fraser et al., 2009). Studies on echinoderms are available
to date only from smaller spatial scales in the region, and show
limited genetic differentiation (Hunter and Halanych, 2008; Wilson
et al., 2007). Studies are as yet too few to test for the importance
and generality of faunal breaks established from classical
biogeographic studies: between east and west Antarctica, and
between these and South Georgia (Hedgpeth, 1970; Clarke and
Johnston, 2003).

The diversity and abundance of sea cucumbers (and echino-
derms in general) in the Antarctic is comparable to that in the deep
sea (Gage and Tyler, 1991). The close biotic affinity between these
realms is well known, a result in part of deep shelves, weak
stratification, substantial mixing, consequent expanded depth
ranges of many species, and more facile biotic exchange across
depth (Lipps and Hickman, 1982; Brandt et al., 2007a; Rogers,
2007). Nevertheless, differences between shallow and deep faunas
remain. Thus dendrochirotids dominate Antarctica shelf habitats,
accounting for about half the sea cucumber species, but are largely
absent from the deep sea, reflective of their suspension feeding
mode of life.

In conclusion, we suggest the following scenario for the
anomalously great, high latitudinal diversity of Antarctic holothur-
oids (and likely other echinoderms). Favorable biological and
physical conditions allow for the invasion/exchange and ecological
success of many lineages that inhabit the remarkably diverse
neighboring regions. Connections between the deep sea and the
Antarctic are well documented, but shallow water taxa also
show substantial (if more limited) links across the Convergence
(Clarke et al., 2005). Thus dispersal into and out of the Antarctic has
been high; allowing inter-regional speciation to lay down a
diverse foundational diversity. Colonizing species can undergo
intra-regional diversification, facilitated by limited dispersal by
circum-Antarctic currents, changes in connectedness of popula-
tions as a result of glacial cycles, and resulting relatively con-
temporaneous differentiation of numerous species from successful
founders.
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